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Abstract

We review our recent results on the noncommutative geometry ofQ-lattices modulo commensura-
bility. We discuss the cases of 1-dimensional and 2-dimensionalQ-lattices. In the first case, we show
that, by considering commensurability classes of 1-dimensionalQ-lattices up to scaling, one recovers
the Bost–Connes quantum statistical mechanical system, whose zero temperature KMS states inter-
twine the symmetries of the system with the Galois action of Gal(Q̄/Q). In the 2-dimensional case,
commensurability classes ofQ-lattices up to scaling give rise to another quantum statistical mechan-
ical system, whose symmetries are the automorphisms of the modular field, and whose (generic) zero
temperature KMS states intertwine the action of these symmetries with the Galois action on an em-
bedding inC of the modular field. Following our joint work with Ramachandran, we then show how
the noncommutative spaces associated to commensurability classes ofQ-lattices up to scale have a
natural geometric interpretation as noncommutative versions of the Shimura varietiesSh(GL1, {±1})
in the Bost-Connes case andSh(GL2,H

±) in the case of the GL2 system. We also show how this leads
naturally to the construction of a system generalizing the Bost–Connes system that fully recovers the
explicit class field theory of imaginary quadratic fields.
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1. Introduction

This paper summarizes the main aspects of our joint work[4] on quantum statistical
mechanics ofQ-lattices, with a view towards its relations to class field theory investigated
in our joint work with Ramachandran[5]. The noncommutative geometry of the space of
Q-lattices modulo the equivalence relation of commensurability provides a setting that uni-
fies several phenomena involving the interaction of noncommutative geometry and number
theory. These include, in the one-dimensional case, the Bost–Connes (BC) system[1] with
arithmetic spontaneous symmetry breaking and its dual space under the duality given by
taking the crossed product with the time evolution. The latter is the noncommutative space
underlying the construction of the spectral realization of the zeros of the Riemann zeta func-
tion in [3]. The corresponding space in the two-dimensional case contains in its algebra of
coordinates the modular Hecke algebras of[6] [7] . The noncommutative compactifications
of modular curves of[14] also appear here as a stratum in the compactification of the space
of commensurability classes of two-dimensionalQ-lattices. Moreover, an interesting and
difficult problem is the generalization of the results of[1] to other number fields (For an
overview of existing results in this direction we refer the reader to the “further developments”
section of[4] and the references quoted therein). The space of commensurability classes of
two-dimensionalQ-lattices up to scaling, which is the main object of this paper, provides a
new approach to the problem, for the case of quadratic fields. In fact, while the BC system is
closely related to the Kronecker–Weber construction of the maximal abelian extension ofQ,
we shall see that the two-dimensional system introduced in[4] is naturally related to the Ga-
lois theory of the modular field, which in turn lies at the heart of the explicit class field theory
problem for imaginary quadratic fields. A generalization of the results of[1] to imaginary
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quadratic fields was obtained in[5]. Moreover, the fact that the noncommutative modular
curves of[14] appear in the compactification suggests the possible existence of a path to-
wards the case of real quadratic fields, along the lines of Manin’s real multiplication program
[13]. The fundamental notions in all that follows are those ofQ-lattices and commensura-
bility.

Definition 1.1. A Q-lattice inRn consists of a pair (Λ,φ) of a latticeΛ ⊂ Rn (a cocompact
free abelian subgroup ofRn of rankn) together with a system of labels of its torsion points
given by a homomorphism of abelian groups

φ : Qn/Zn −→ QΛ/Λ.

Two Q-lattices are commensurable,

(Λ1, φ1) ∼ (Λ2, φ2),

iff QΛ1 = QΛ2 and

φ1 = φ2 mod Λ1 +Λ2

Commensurability defines an equivalence relation amongQ-lattices. By definition a
Q-lattice is invertible whenφ is an isomorphism (Fig. 1). Two invertibleQ-lattices are
commensurable if and only if they are equal. While mostQ-lattices are not commensurable
to an invertible one, the set of invertibleQ-lattices gives a cross-section of the equivalence
relation on the subset ofQ-lattices that have this property. The equivalence relation of
commensurability on the space ofQ-lattices is subtle enough an operation that the resulting

Fig. 1. Generic and invertible two-dimensionalQ-lattices.
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quotient can only be described efficiently through noncommutative geometry (it is crucial
for this that one does not restrict to the invertible ones). In particular, when viewed as a
set in the classical sense, the spaceLn of commensurabilty classes ofQ-lattices inRn has
a typical property of noncommutative spaces: it has the cardinality of the continuum but
one cannot construct a countable collection of measurable functions that separate points
of Ln. If, instead of taking the quotient as a set, one encodes the equivalence relation in a
“dynamical” manner, i.e. one builds a convolution algebra from the various identifications,
one obtains very interesting algebras, playing the role of coordinate algebras on the spaces
Ln. In particular, the topology of the spaceLn is encoded by aC∗-algebraC∗(Ln). These
C∗-algebras and the dynamical systems obtained from the natural time evolution on the
C∗-algebrasC∗(L1/R

∗+) andC∗(L2/C
∗) of Q-lattices up to scaling, are the central objects

of this paper.

2. Quantum statistical mechanics

In quantum statistical mechanics, thealgebra of observablesis aC∗-algebraA. Ex-
pectation values are assigned to observables throughstates. A state is a linear functional
ϕ : A→ C satisfying normalization and positivity,

ϕ(1)= 1, ϕ(a∗a) ≥ 0.

One can think of a state as a probability measure on the NC spaceX related toA by
A= “C(X)”. The time evolution of a quantum statistical mechanical system is given as a one-
parameter family of automorphismsσt ∈ Aut(A) of theC∗-algebra of observables. Given a
representation of theC∗-algebraA as a concrete algebra of operators on a Hilbert spaceH,
one can consider theHamiltonian implementing the time evolution in the representation.
This is the operatorH satisfying

σt(a) = eitH a e−itH for all a ∈ A.

One then looks for equilibrium states, depending on a thermodynamical parameter, the
inverse temperatureβ = 1/kT (where for simplicity we can put the Boltzmann constantk
equal to 1). The analog of integrating against the Gibbs measure on the phase space for a
classical Hamiltonian system is given in this quantum mechanical setting by states of the
form

ϕ(a) = 1

Z(β)
Tr(a e−βH ) (2.1)

with the partition function given by

Z(β) = Tr(e−βH ). (2.2)

The expression(2.1), however, makes sense only under the assumption that the operator
exp(−βH) is of trace class. Often, this is the case only in a certain range (low temperature).
Thus, one needs a better notion of “equilibrium states”, which makes sense more generally
and is satisfied in particular by states of the form(2.1). The correct notion is provided by
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the Kubo–Martin–Schwinger condition (KMS) (cf.[2,8,9]). Given aC∗-dynamical system
(A, σt) – that is, aC∗-algebra with a one-parameter group of automorphisms—a stateϕ on
A satisfies the KMS condition at inverse temperature 0< β <∞ iff for all a, b ∈ A there
exists a functionFa,b(z) holomorphic on the strip 0< �(z) < β continuous on the closed
strip and bounded, such that for allt ∈ R

Fa,b(t) = ϕ(aσt(b)) and Fa,b(t + iβ) = ϕ(σt(b)a). (2.3)

The analogous notion at zero temperature (β = ∞) is more subtle. In fact, one may use
the the same notion of KMS states, that is, the existence for eacha, b ∈ A of a bounded
holomorphic functionFa,b(z) on the upper half plane such thatFa,b(t) = ϕ(aσt(b)). This
definition of KMS∞ states is often used in the literature. However, it is well known that this
condition is considerably weaker than(2.3). For instance, the set KMSβ of KMS states at
β <∞ is a Choquet simplex (for which we callEβ the set of extremal points). In general,
this simplicial structure is lost atβ = ∞, if one adopts this notion of KMS states. In
the simple case of the trivial time evolution, for instance, all states satisfy such weaker
definition of KMS∞ while only tracial states satisfy(2.3)atβ <∞. Thus, a better notion
of KMS∞ condition is obtained by considering states that are weak limits of KMSβ states
asβ→∞,

ϕ∞(a) = lim
β→∞

ϕβ(a), ∀a ∈ A. (2.4)

This restores the property that the set KMS∞ is a simplex and one can regard the set
E∞ of its extreme points as an analog of the set ofclassical pointson the noncommu-
tative spaceA. In particular, in the cases of arithmetic interest, one can think of the set
E∞ as the “classical points” of a noncommutative arithmetic variety. For instance, for
the GL(2)-system withC∗-algebraA = C∗(L2/C

∗), the setE∞ is the classical Shimura
variety

E∞ ∼= GL2(Q)\GL2(A)/C∗,

while the noncommutative spaceL2/C
∗ is a noncommutative arithmetic variety containing

E∞ as its set of “classical points”. As we shall see below, the arithmetic structure will be
specified by an arithmetic subalgebraAQ of A. This will play a key role in the relation
between the symmetries of the system and the action of the Galois group on statesϕ ∈ E∞
evaluated onAQ (Fig. 2.).

2.1. Symmetries

An important role in quantum statistical mechanics is played by symmetries. Typically,
symmetries of the algebraA compatible with the time evolution induce symmetries of the
equilibrium statesEβ at different temperatures. Especially important are the phenomena
of symmetry breaking. In such cases, there is a global underlying groupG of symme-
tries of the algebraA but in certain ranges of temperature the choice of an equilibrium
stateϕ breaks the symmetry to a smaller subgroupGϕ = {g ∈ G : g∗ϕ = ϕ}, whereg∗
denotes the induced action on states. Various systems can exhibit one or more phase tran-
sitions, or none at all. A typical situation in physical systems sees a unique KMS state
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Fig. 2. The KMS condition.

for all values of the parameter above a certain critical temperature (β < βc). This cor-
responds to a chaotic phase such as randomly distributed spins in a ferromagnet. When
the system cools down and reaches the critical temperature, the unique equilibrium state
branches off into a larger set KMSβ and the symmetry is broken by the choice of an ex-
tremal state inEβ. We will see in detail one such case and a case with multiple phase
transitions. A very important point is that we need to consider both symmetries by au-
tomorphisms and by endomorphisms.Automorphisms: a subgroupG ⊂ Aut(A) is com-
patible withσt if for all g ∈ G and for all t ∈ R, we havegσt = σtg. There is then an
induced action ofG on KMS states and in particular on the setEβ. If u is a unitary, acting
onA by

Adu : a �→ uau∗

and satisfyingσt(u) = u, then we say that Adu is an inner automorphism of (A, σt). In-
ner automorphisms act trivially on KMS states.Endomorphisms: let ρσt = σtρ be a∗-
homomorphism. Consider the idempotente = ρ(1). If ϕ ∈ Eβ is a state such thatϕ(e) �= 0,
then there is a well defined pullbackρ∗ϕ,

ρ∗(ϕ) = 1

ϕ(e)
ϕ ◦ ρ. (2.5)

Let u be an isometry compatible with the time evolution by

σt(u) = λitu, λ > 0. (2.6)

One hasu∗u = 1 anduu∗ = e. We say that Adu defined bya �→ uau∗ is an inner endomor-
phism of (A, σt). The condition(2.6)ensures that (Adu)∗ϕ is well defined according to(2.5)
and the KMS condition shows that the induced action of an inner endomorphism on KMS
states is trivial. One needs to be especially careful in defining the action of endomorphisms
by (2.5). In fact, there are cases where for KMS∞ states one finds onlyϕ(e) = 0, yet it is
still possible to define an interesting action of endomorphisms by a procedure of “warming
up and cooling down”. For this to work one needs sufficiently favorable conditions, namely
that the “warming up” map

Wβ(ϕ)(a) = Tr(πϕ(a) e−βH )

Tr( e−βH )
(2.7)
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gives a homeomorphismWβ : E∞ → Eβ for all β sufficiently large. One can then define
the action by

(ρ∗ϕ)(a) = lim
β→∞

(
ρ∗Wβ(ϕ)

)
(a), (2.8)

for all ϕ ∈ E∞ and alla ∈ A.

3. The Bost–Connes system

In [1], Bost and Connes constructed aC∗-dynamical system (A, σt) with spontaneous
symmetry breaking, which encodes the arithmetic of the cyclotomic fieldQcycl, that is, of
the maximal abelian extension ofQ by the Kronecker–Weber theorem. The algebraA of
the Bost–Connes system is generated by two types of operators. The first type consists of
phase operatorse(r), parameterized by elementsr ∈ Q/Z. These can be represented on the
Fock space generated by occupation numbers|n〉 as the operators

e(r)|n〉 = α(ζnr )|n〉. (3.1)

Here, we denote byζa/b = ζab theabstractroots of unity generatingQcycl and byα : Qcycl ↪→
C an embedding that identifiesQcycl with the subfield ofC generated by theconcreteroots
of unity. The operators(3.1) are familiar in the theory of quantum optics, where they are
used to define the quantized optical phase as a state

|θm,N〉 = e
(

m

N + 1

)
· vN,

wherevN is a superposition of occupation states

vN = 1

(N + 1)1/2

N∑
n=0

|n〉.

In such quantization of the phase,N is chosen as a scale at which the phase is discretized.
One needs then to ensure that the results are consistent over changes of scale. The other
operators that generate the Bost–Connes algebra can be thought of as implementing the
changes of scales in the optical phases in a consistent way. These operators are isometries
µn parameterized by positive integersn ∈ N× = Z>0. The changes of scale are described
by the action of theµn on thee(r) by

µne(r)µ
∗
n =

1

n

∑
ns=r

e(s). (3.2)

In addition to this compatibility condition, the operatorse(r) andµn satisfy other simple
relations. These give a presentation of the algebraA of the form ([1,10]):
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• µ∗nµn = 1, for all n ∈ N×,
• µkµn = µkn, for all k, n ∈ N×,
• e(0)= 1, e(r)∗ = e(−r), ande(r)e(s) = e(r + s), for all r, s ∈ Q/Z,
• For alln ∈ N× and allr ∈ Q/Z, the relation(3.2)holds.

One considers on the algebraA the time evolution given by

σt(µn) = nitµn, σt(e(r)) = e(r). (3.3)

3.1. Hecke algebra

The fact that(3.3)defines a natural time evolution is best understood by describing the
algebraA as a Hecke algebra for the pair of groups (Γ0, Γ ) = (PZ, PQ), whereP is the
ax+ b group. This is the way the algebraA was introduced in[1]. Whenever the inclusion
Γ0 ⊂ Γ has the property that the leftΓ0 orbits of anyγ ∈ Γ/Γ0 are finite (same for right
orbits on the left coset), one can consider the Hecke algebra of the pair (Γ0, Γ ) given by
functions onΓ0\Γ/Γ0 with the convolution product

(f1∗f2)(γ) =
∑
Γ0\Γ

f1(γγ−1
1 )f2(γ1) (3.4)

and the involutionf ∗(γ) := f (γ−1). The Hecke algebra defined this way has a regular
representation on the Hilbert space12(Γ0\Γ )

(π(f )ξ)(γ) =
∑
Γ0\Γ

f (γγ−1
1 )ξ(γ1).

The canonical time evolution on the corresponding von Neumann algebra is determined by
the ratio of the length of left and rightΓ0 orbits,

σt(f )(γ) =
(
L(γ)

R(γ)

)−it
f (γ), (3.5)

where, forγ ∈ Γ/Γ0 we setL(γ) = #Γ0γ andR(γ) = L(γ−1). In the case of the pair
(Γ0, Γ ) of parabolic subgroups (P+Z , P

+
Q ) of GL+2 (Q), the Hecke algebra(3.4) gives the

Bost–Connes algebra and the time evolution(3.5) is given by(3.3).

3.2. One-dimensionalQ-lattices

We now return to the point of view ofQ-lattices. As showed in[4], the algebra
A of the Bost–Connes system has a natural interpretation as the noncommutative al-
gebra of coordinates of the spaceL1/R

∗+ of one-dimensionalQ-lattices (up to scaling)
modulo commensurability. In fact, a one-dimensionalQ-lattice can always be written in
the form

(Λ,φ) = (λZ, λ ρ) (3.6)
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for someλ > 0 and some

ρ ∈ Hom(Q/Z,Q/Z) = lim←−Z/nZ = Ẑ. (3.7)

By considering lattices up to scaling, we eliminate the factorλ > 0 so that one-dimensional
Q-lattices up to scale are completely specified by the choice of the elementρ ∈ Ẑ. Thus,
the algebra of coordinates of the space of one-dimensionalQ-lattices up to scale is the
commutativeC∗-algebra

C(Ẑ) � C∗(Q/Z). (3.8)

The identification in(3.8) results from the fact that̂Z is the Pontrjagin dual ofQ/Z. The
equivalence relation of commensurability is implemented by the action of the semigroup
N× onQ-lattices. The corresponding action on the algebra(3.8) is by

αn(f )(ρ) =
{
f (n−1ρ), ρ ∈ nẐ
0, otherwise.

(3.9)

Thus, the quotient of the space of one-dimensionalQ-lattices up to scale by the commensu-
rability relation and its algebra of coordinates of is given by the semigroup crossed product

C∗(Q/Z) � N×. (3.10)

This is another description of the Bost–Connes algebra, as(3.10)has the right set of gen-
erators and relations, with(3.2) implementing the semigroup action(3.9).

3.3. Structure of KMS states

The Bost–Connes algebra has irreducible representations on the Hilbert spaceH =
12(N×). These are parameterized by elementsα ∈ Ẑ∗ = GL1(Ẑ). Any such element
defines an embeddingα : Qcycl ↪→ C and the corresponding representation is of the
form

πα(e(r)) εk = α(ζkr ) εk
πα(µn) εk = εnk

(3.11)

The Hamiltonian implementing the time evolution(3.9)onH is

H εk = logk εk (3.12)

Thus, the partition function of the Bost–Connes system is the Riemann zeta function

Z(β) = Tr(e−βH ) =
∞∑
k=1

k−β = ζ(β). (3.13)

Bost and Connes showed in Ref.[1] that KMS states have the following structure, with a
phase transition atβ = 1.
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• In the rangeβ ≤ 1, there is a unique KMSβ state. Its restriction toQ[Q/Z] is of the form

ϕβ

(
e
(a
b

))
= b−β

∏
p prime, p|b

1− pβ−1

1− p−1 .

• For 1< β ≤ ∞, the set of extremal KMS statesEβ can be identified witĥZ∗. It has a
free and transitive action of this group induced by an action onA by automorphisms.
The extremal KMSβ state corresponding toα ∈ Ẑ∗ is of the form

ϕβ,α(x) = 1

ζ(β)
Tr(πα(x) e−βH ). (3.14)

• At β = ∞, the Galois group Gal(Qcycl/Q) acts on the values of statesϕ ∈ E∞
on an arithmetic subalgebraAQ ⊂ A. These have the property thatϕ(AQ) ⊂ Qcycl

and that the isomorphism (class field theory isomorphism)θ : Gal(Qcycl/Q)
∼=−→Ẑ∗

intertwines the Galois action on values with the action ofẐ∗ by symmetries,
namely

γ ϕ(x) = ϕ(θ(γ) x), (3.15)

for all ϕ ∈ E∞, for all γ ∈ Gal(Qcycl/Q) and for allx ∈ AQ.

Here, the arithmetic subalgebra can be taken as the algebra overQ generated by thee(r)
andµn,µ∗n, or equivalently as the Hecke algebra of compactly supportedQ-valued func-
tions onΓ0\Γ with the convolution product(3.4). As we shall see, a different description
of the arithmetic subalgebra is given in[4] in terms of homogeneous weight zero func-
tions ofQ-lattices. The choice of an “arithmetic subalgebra” corresponds to endowing the
noncommutative spaceA with an arithmetic structure. The subalgebra corresponds to the
rational functions and the values of KMS∞ states at elements of this subalgebra should be
thought of as “values of rational functions at classical points” (cf.[5]). What is remarkable
about the ground states of this system is that, when evaluated on the rational observables
of the system, they only affect values that are algebraic numbers. Moreover, these span
the maximal abelian extension ofQ and the class field theory isomorphism intertwines the
two actions of the id̀ele class group, as symmetry group of the system, and of the Galois
group, as permutations of the expectation values of the rational observables. In general,
the fact that the Galois action on the values of states would preserve positivity (i.e. would
give values of other states) is a very unusual property. We refer to such states as “fabulous
states”.

3.4. Noncommutative geometry and class field theory

The main result of Bost–Connes[1] on the structure of KMS states for the system
described above suggests the possibility of a connection between noncommutative geometry
and class field theory. IfK is a number field with [K : Q] = n, andK̄ is an algebraic closure
of K, then one has the Galois group Gal(K̄/K). This group of symmetries is a very beautiful
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object, and quite mysterious even in the case ofK = Q. On the other hand, one can consider
a smaller field than̄K, namely themaximal abelian extensionKab of K. This has the property
that

Gal(Kab/K) = Gal(K̄/K)ab.

The Kronecker–Weber theorem shows that forK = Q

Qab = Qcycl and Gal(Qab/Q) � Ẑ∗.

Finding an analogous result for more general number fields is the content of Hilbert’s 12th
problem, the problem of explicit class field theory. For a number fieldK one knows that
there is an identification (the class field theory isomorphism)

θ : CK/DK
�−→Gal(Kab/K), (3.16)

whereCK = A∗
K/K

∗ is the group of id̀ele classes andDK the connected component of the
identity inCK. In the explicit class field theory problem one wants to obtain an explicit set of
generators forKab and an explicit description of the action of Gal(Kab/K). Remarkably, a
complete solution to Hilbert’s 12th problem exists only forQ and for the imaginary quadratic
fieldsQ(

√−d) for d > 1 a positive integer. The first challenge is posed by the case of real
quadratic fieldsQ(

√
d). It is natural to ask whether noncommutative geometry can provide

some new insight on the Hilbert 12th problem, at least for the case of real quadratic fields.
A series of beautiful reflections on this theme is given in Manin’s real multiplication project
[13]. The Bost–Connes system has also an adèlic description[1], where the algebraA is
Morita equivalent to the crossed product

C0(Af ) � Q∗
+ (3.17)

(cf. [11]) with Af = Ẑ⊗Q the finite ad̀eles ofQ. The set of extremal KMS states below
critical temperature can also be described as the adèlic quotient

E∞ � GL1(Q)\GL1(A)/R∗
+, (3.18)

with A = Af × R the full ad̀eles ofQ. Given a number fieldK with [K : Q] = n, there
is an embeddingK∗ ↪→ GLn(Q) of its multiplicative group in GLn(Q). Such embedding
induces an embedding of GL1(AK,f ) whereAK,f = Af ⊗K are the finite ad̀eles ofK into
GLn(Af ). This suggests a possible strategy to develop an approach to explicit class field
theory via the construction of “fabulous states” for quantum statistical mechanical systems
associated to other number fields, by studying GLn analogs of the Bost–Connes system.
This was done (especially in the case of GL2) in [4]. In the case of GL2, one sees that
the geometry of modular curves and the algebra of modular forms appear naturally. These
are the main ingredients also in the solution of the explicit class field theory problem for
imaginary quadratic fields (cf.[16]).
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4. TheGL2-system

In this section, we will describe the main features of the GL2 analog of the Bost–Connes
system, according to the results of[4]. In the following, to avoid confusion, we use the
notationA1 andA1,Q for theC∗-algebra of the Bost–Connes system and its arithmetic
subalgebra andA2 andA2,Q for the analogs in the GL2 case. Any two-dimensionalQ-
lattice can be written in the form

(Λ,φ) = (λ(Z+ Zτ), λρ),

for someλ ∈ C∗, someτ ∈ H, and someρ ∈ M2(Ẑ) = Hom(Q2/Z2,Q2/Z2). Thus, the
space of two-dimensionalQ-lattices up to the scale factorλ ∈ C∗ and up to isomorphisms,
is given by

M2(Ẑ)×H mod Γ = SL(2,Z). (4.1)

The commensurability relation giving the spaceL2/C
∗ is implemented by the partially

defined action of GL+2 (Q). More precisely, we proceed as follows. We choose a basis
{e1 = 1, e2 = −i} of C as a vector space overR, with respect to which we define the action
of GL+2 (R) on C. If we setΛ0 = Ze1 + Ze2 = Z+ iZ, an elementρ ∈ M2(Ẑ) defines a
homomorphism

ρ : Q2/Z2 → QΛ0/Λ0, ρ(a) = ρ1(a)e1 + ρ2(e)e2.

Consider the quotient of the space

Ũ := {(g, ρ, α) ∈ GL+2 (Q)×M2(Ẑ)×GL+2 (R) : gρ ∈ M2(Ẑ)} (4.2)

by the action ofΓ × Γ given by

(γ1, γ2) (g, ρ, α) = (γ1gγ
−1
2 , γ2ρ, γ2α). (4.3)

The groupoidR2 of the equivalence relation of commensurability on two-dimensionalQ-
lattices (not considered up to scaling for the moment) is a locally compact groupoid, which
can be parameterized by the quotient of(4.2)by Γ × Γ via the mapr : Ũ→ R2,

r(g, ρ, α) =
(

(α−1g−1Λ0, α
−1ρ), (α−1Λ0, α

−1ρ)
)
. (4.4)

We then consider the quotient by scaling. Upon identifyingC∗ ⊂ GL+2 (R) by

a+ ib ∈ C∗ �→
(
a b

−b a

)
∈ GL+2 (R),

the quotient GL+2 (R)/C∗ can be identified with the hyperbolic planeH in the usual way

α =
(
a b

c d

)
∈ GL+2 (R) �→ ai + b

ci + d ∈ H.
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If (Λk, φk) k = 1,2 are a pair of commensurable two-dimensionalQ-lattices, then for any
λ ∈ C∗, theQ-lattices (λΛk, λφk) are also commensurable, with

r(g, ρ, αλ−1) = λr(g, ρ, α).

However, the action ofC∗ on Q-lattices is not free due to the presence of lattices (such as
Λ0) with nontrivial automorphisms. Thus, the quotientZ = R2/C

∗ is no longer a groupoid.
Still, one can define a convolution algebra forZ by restricting the convolution product of
R2 to homogeneous functions of weight zero, where a functionf has weightk if it satisfies

f (g, ρ, αλ) = λkf (g, ρ, α), ∀λ ∈ C∗.

The spaceZ is the quotient of the space

U := {(g, ρ, z) ∈ GL+2 (Q)×M2(Ẑ)×H|gρ ∈ M2(Ẑ)} (4.5)

by the action ofΓ × Γ . Here, the spaceM2(Ẑ)×H has a partially defined action of GL+2 (Q)
given by

g(ρ, z) = (gρ, g(z)),

whereg(z) denotes the action as fractional linear transformation. Thus, the quotientL2/C
∗

of the space of two-dimensionalQ-lattices up to scale by the relation of commensurability
is a noncommutative space whose algebra of coordinates is a Hecke algebra obtained as
follows. Consider the spaceCc(Z) of continuous compactly supported functions onZ. These
can be seen, equivalently, as functions onU as in(4.5) invariant under theΓ × Γ action
(g, ρ, z) �→ (γ1gγ

−1
2 , γ2z). One endowsCc(Z) with the convolution product

(f1 ∗ f2)(g, ρ, z) =
∑

s∈Γ \GL+2 (Q):sρ∈M2(Ẑ)

f1(gs−1, sρ, s(z))f2(s, ρ, z) (4.6)

and the involutionf ∗(g, ρ, z) = f (g−1, gρ, g(z)). The time evolution is given by

σt(f )(g, ρ, z) = det(g)it f (g, ρ, z). (4.7)

Forρ ∈ M2(Ẑ), let

Gρ := {g ∈ GL+2 (Q) : gρ ∈ M2(Ẑ)} (4.8)

and consider the Hilbert spaceHρ = 12(Γ \Gρ). A two-dimensionalQ-lattice L =
(Λ,φ) = (ρ, z) determines a representation of the Hecke algebra by bounded operators
onHρ, setting

(πL(f )ξ) (g) =
∑
s∈Γ \Gρ

f (gs−1, sρ, s(z)) ξ(s). (4.9)

In particular, when theQ-latticeL = (Λ,φ) is invertible, one obtains

Hρ ∼= 12(Γ \M+
2 (Z)).
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In this case, the Hamiltonian implementing the time evolution(4.7)is given by the operator

H εm = log det(m) εm. (4.10)

Thus, in the special case of invertibleQ-lattices,(4.9) yields apositive energyrepresen-
tation. In general, forQ-lattices which are not commensurable to an invertible one, the
corresponding HamiltonianH is not bounded below. The Hecke algebra(4.6)admits aC∗-
algebra completionA2, where the norm is the sup over all representationsπL. The partition
function for this GL2-system is given by

Z(β) =
∑

m∈Γ \M+
2 (Z)

det(m)−β =
∞∑
k=1

σ(k) k−β = ζ(β)ζ(β − 1), (4.11)

whereσ(k) =∑d|k d. This already hints to the fact that the system might have more than
one phase transition. In fact, the form of the partition function suggests the possibility that
two distinct phase transitions might happen atβ = 1 and 2.

5. KMS states and symmetries

The structure of KMS states for the GL2-system is analysed in[4]. The main result is
the following.

Theorem 5.1. TheKMSβ states of theGL2-system have the following properties:

(1) In the rangeβ ≤ 1, there are no KMS states.
(2) In the rangeβ > 2, the set of extremal KMS states is given by the classical Shimura

variety

Eβ ∼= GL2(Q)\GL2(A)/C∗. (5.1)

This shows that the extremal KMS states at sufficiently low temperature are parameterized
by the invertibleQ-lattices. The explicit expression for these extremal KMSβ states is
obtained as

ϕβ,L(f ) = 1

Z(β)

∑
m∈Γ \M+

2 (Z)

f (1,mρ,m(z)) det(m)−β (5.2)

whereL = (ρ, z) is an invertibleQ-lattice. The difficult part of the proof is to show that
indeed all extremal KMSβ states are of this form. Whenβ→ 1 from above, the different
pure phases merge, so it is reasonable to expect that in the intermediate range 1< β < 2
there will be a unique KMSβ state. Thus, the system exhibits two distinct phase transitions
atβ = 2 and 1. The main step in the proof ofTheorem 5.1is the construction of a subalgebra
generated by projectionsπp(k, l), wherep is a prime number andk, l are integers withk ≤ l,
with the following properties
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• If ϕ is a KMSβ state for the GL2-system, then it satisfies

ϕ(πp(k, l)) = p−(k+l)βpl−k(1+ p−1)(1− p−β)(1− p1−β), k < l
ϕ(πp(l, l)) = p−2lβ(1− p−β)(1− p1−β), k = l.

• If pj are distinct prime numbers, then

ϕ


∏

j

πpj (kj, lj)


 =

∏
j

ϕ(πpj (kj, lj)).

In particular, these properties show that there cannot be any KMS state in the range
0< β < 1.

5.1. Symmetries

In the range 2< β ≤ ∞, there is a very interesting action of symmetries on the KMS
states of the GL2-system. The symmetry group ofA2 (including both automorphisms and
endomorphisms) can be identified with the group

GL2(Af ) = GL+2 (Q)GL2(Ẑ). (5.3)

Here, the group GL2(Ẑ) acts by automorphisms,

θγ (f )(g, ρ, z) = f (g, ργ, z). (5.4)

Geometrically, this is the group of deck transformations of coverings of modular curves. In
fact, when we consider the (compact) modular curveX(n) over the cyclotomic fieldQ(ζn),
these form a tower over the baseX(1)= P1 overQ, and the group GL2(Z/nZ)/±1 is the
group of automorphisms of the projectionX(n) → X(1) (cf. [15,5]) so that one obtains the
automorphism group

GL2(Ẑ)/±1= lim←−
n

GL2(Z/nZ)/{±1}. (5.5)

On the other hand, the group GL+2 (Q) in (5.3)acts by endomorphisms,

θm(f )(g, ρ, z) =
{
f (g, ρm̃−1, z), ρ ∈ mM2(Ẑ)

0, otherwise
(5.6)

wherem̃ = det(m)m−1. The subgroupQ∗ ↪→ GL2(Af ) acts by inner, hence the group of
symmetries of the set of extremal statesEβ is of the form

S = Q∗\GL2(Af ). (5.7)

In the case ofE∞ states (defined as weak limits), the action of GL+
2 (Q) is more subtle to

define. In fact,(5.6)does not directly induce a nontrivial action onE∞. However, there is
a nontrivial action induced by the action onEβ states for sufficiently largeβ. The action on
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the KMS∞ states is obtained by a “warming up and cooling down procedure”, as in(2.7)
and (2.8).

5.2. Lattice functions

In the case of the BC system, the arithmetic subalgebraA1,Q can be regarded as the
algebra generated by theµn,µ∗n and by homogeneous functions of weight zero on one-
dimensionalQ-lattices obtained as a normalization of the functions

εk,a(Λ,φ) =
∑

y∈Λ+φ(a)

y−k (5.8)

by covolume, namely by the functionsek,a := ck εk,a, wherec(Λ) is proportional to the
covolume|Λ| and satisfies

(2π
√−1)c(Z) = 1.

In fact, it suffices to consider thee1,a.
It is natural therefore to expect that the analogousA2,Q of the GL2-system will involve

Eisenstein series

E2k,a(Λ,φ) =
∑

y∈Λ+φ(a)

y−2k (5.9)

and

Xa(Λ,φ) =
∑

y∈Λ+φ(a)

y−2 −
∑
y∈Λ

′
y−2 (5.10)

normalized to weight zero, in a similar fashion. This points to the fact that modular functions
should appear naturally as the rational subalgebra of the GL2-system. This can also be
noticed from the fact that the group of symmetriesSdescribed in(5.7) is in fact the Galois
group of the field of modular functions, by a deep arithmetic result of Shimura[16]. As we
shall see below, in factA2,Q will turn out to be a subalgebra of unbounded multipliers of
A2. Modular functions will appear naturally from a simple set of conditions specifying the
arithmetic nature of these multipliers.

5.3. The modular field

We recall briefly some basic facts and results about the modular field. LetF denote the
field of modular functions overQab, namely the union of the fieldsFN of modular functions
of levelNrational over the cyclotomic fieldQ(ζn), that is, such that theq-expansion in powers
of q1/N = exp(2πiτ/N) has all coefficients inQ(e2πi/N ). The action of the Galois group
Ẑ∗ � Gal(Qab/Q) on the coefficients determines a homomorphism

cycl : Ẑ∗ → Aut(F ). (5.11)
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The modular field has an explicit set of generators given by the Fricke functions ([16,12]).
If ℘ is the Weierstrass℘-function, which gives the parameterization

w �→ (1, ℘(w; τ,1), ℘′(w; τ,1))

of the elliptic curve

y2 = 4x3 − g2(τ)x− g3(τ)

by the quotientC/(Z+ Zτ), then the Fricke functions are homogeneous functions of one-
dimensional lattices of weight zero, parameterized byv ∈ Q2/Z2, of the form

fv(z) = −2735g2(z)g3(z)

D(z)
℘(λz(v); z,1), (5.12)

whereD(z) = g3
2 − 27g2

3 is the discriminant andλz(v) := v1z+ v2. The following impor-
tant result of Shimura completely determines the Galois group of the modular field:

Aut(F ) ∼= Q∗\GL2(Af ).

If τ ∈ H is a generic point, then the evaluation mapf �→ f (τ) is an embeddingF ↪→ C.
We denote byFτ the image inC. This yields an identification

θτ : Gal(Fτ/Q)
�−→Q∗\GL2(Af ). (5.13)

5.4. Arithmetic subalgebra

We determine a natural arithmetic subalgebraA2,Q of unbounded multipliers ofA2.
Unbounded multipliers onA2 are endowed with the same convolution product(4.6). Ele-
ments ofA2,Q are continuous functions onZ (cf. (4.5)), with finite support in the variable
g ∈ Γ \GL+2 (Q). For convenience, we adopt the notation

f(g,ρ)(z) = f (g, ρ, z)

so thatf(g,ρ) ∈ C(H). LetpN : M2(Ẑ) → M2(Z/NZ) be the canonical projection. We say
thatf is of levelN if

f(g,ρ) = f(g,pN (ρ)), ∀(g, ρ).

Thenf is completely determined by the functions

f(g,m) ∈ C(H), form ∈ M2(Z/NZ).

Notice that the invariance

f (gγ, ρ, z) = f (g, γρ, γ(z)),
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for all γ ∈ Γ and for all (g, ρ, z) ∈ U, implies that we have

f(g,m)|γ = f(g,m), ∀γ ∈ Γ (N) ∩ g−1Γg. (5.14)

so thatf is invariant under a congruence subgroup. Thus, we define the arithmeticA2,Q as
follows.

Definition 5.1. A continuous function onZ is in the arithmetic subalgebraA2,Q if it satisfies
the following properties:

(1) The support off in Γ \GL+2 (Q) is finite.
(2) The functionf is of finite level with

f(g,m) ∈ F, ∀(g,m).

(3) The functionf satisfies thecyclotomic condition:

f(g,α(u)m) = cycl(u) f(g,m),

for all g ∈ GL+2 (Q) diagonal and allu ∈ Ẑ∗, with

α(u) =
(
u 0

0 1

)

and cycl as in(5.11).

If we took all but the last condition, this would allow the algebraA2,Q to contain the
cyclotomic fieldQab ⊂ C, but this would prevent the existence of “fabulous states", be-
cause the “fabulous” property would not be compatible withC-linearity. The cyclotomic
condition forces the spectrum of the corresponding elements ofA2,Q to contain all Galois
conjugates of any such root, so that these elements cannot be scalar. This is achieved
via a simple an natural consistency condition on the roots of unity that appear in the
coefficients of theq-series. The algebraA2,Q defined by the properties above is a sub-
algebra of unbounded multipliers ofA2, which is globally invariant under the group of
symmetriesS.

5.5. Galois action onE∞

Consider a stateϕ = ϕ∞,L ∈ E∞, where the invertibleQ-latticeL = (ρ, τ) is generic,
in the sense thatτ ∈ H is generic so that one has the identification(5.13).

Theorem 5.2. For ϕ∞,L ∈ E∞ withL = (ρ, τ) generic, the values of the state on elements
of the arithmetic subalgebra lie in the image inC of the modular field,

ϕ(A2,Q) ⊂ Fτ, (5.15)
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and the isomorphism

θϕ : Gal(Fτ/Q)
�−→Q∗\GL2(Af ), (5.16)

given by

θϕ(γ) = ρ−1 θτ(γ) ρ, (5.17)

for θτ as in (5.13), intertwines the Galois action on the values of the state with the action
of symmetries,

γ ϕ(f ) = ϕ(θϕ(γ)f ), ∀f ∈ A2,Q, ∀γ ∈ Gal(Fτ/Q). (5.18)

6. Noncommutative Shimura varieties

This point of view is stressed in our joint work with Ramachandran[5]. With the notation
Sh(G,X) := G(Q)\G(Af )×X, the Shimura variety associated to the tower of modular
curves is described by the adèlic quotient

Sh(GL2,H
±) = GL2(Q)\GL2(Af )×H±

= GL+2 (Q)\GL2(Af )×H = GL+2 (Q)\GL2(A)/C∗. (6.1)

The inverse limit lim←−Γ \H over congruence subgroupsΓ ⊂ SL(2,Z) gives a connected

component, while by taking congruence subgroups in SL(2,Q) one obtains the adèlic ver-
sionSh(GL2,H

±). The set of components ofSh(GL2,H
±) is given by

π0(Sh(GL2,H
±)) = Sh(GL1, {±1}), (6.2)

where

Sh(GL1, {±1}) = GL1(Q)\GL1(Af )× {±1} = Q∗
+\A∗

f (6.3)

is the Shimura variety associated to the cyclotomic tower (cf.[5,15]). As we shall see below,
(6.3)can be thought of as the “set of classical points” of the noncommutative space of the
BC system, where the algebraA1 is Morita equivalent toC0(Af ) � Q∗+. The result of[1]
shows in particular that, at zero temperature, the BC system settles onto its “commutative
points” (extremal KMS∞ states) which form the classical Shimura variety(6.3). Similarly,
the results ofTheorems 5.1 and 5.2show the analogous behavior in the GL2-system. At
zero temperature, the system settles onto its “commutative points” given by the Shimura
variety (6.1). This leads us naturally to think of the algebras of the BC system and of
the GL2-system asnoncommutative Shimura varieties. The first is associated to the adèlic
quotient

Sh(nc)(GL1, {±1}) := GL1(Q)\(Af × {±1}) = GL1(Q)\A·/R∗
+ (6.4)



A. Connes, M. Marcolli / Journal of Geometry and Physics 56 (2006) 2–23 21

with A· := Af × R∗. This has acompactification, obtained by replacingA· by A, as in
[3],

Sh(nc)(GL1, {±1}) = GL1(Q)\A/R∗
+. (6.5)

The compactification consists of adding the trivial lattice (with a possibly nontrivialQ-
structure). The dual space (namely the principalR∗+-bundle obtained by taking the crossed
product by time evolutionσt) is the space of ad̀ele classes

L1 = GL1(Q)\A → GL1(Q)\A/R∗
+ (6.6)

that gives the spectral realization of zeros of the Riemannζ function in[3]. This dual space
corresponds to considering commensurability classes of one-dimensionalQ-lattices (not up
to scaling). In the case of the GL2-system, similarly, we have a noncommutative Shimura
variety

Sh(nc)(GL2,H
±) := GL2(Q)\(M2(Af )×H±). (6.7)

This also admits a compactification, now given by adding the boundaryP1(R) to H±, as in
the noncommutative compactification of modular curves of[14],

Sh(nc)(GL2,H
±) := GL2(Q)\(M2(Af )× P1(C)) = GL2(Q)\M2(A)/C∗, (6.8)

whereP1(C) = H± ∪ P1(R). This corresponds to adding to the space of commensurability
classes of two-dimensionalQ-lattices the pseudolattices (in the sense of[13]), here consid-
ered together with aQ-structure. In this case we can also consider the dual system. This is
aC∗-bundle

L2 = GL2(Q)\M2(A). (6.9)

On this dual space modular forms appear naturally instead of modular functions and the
algebra of coordinates contains the modular Hecke algebra of Connes–Moscovici ([6,7])
as arithmetic subalgebra. The identification(6.2) then gives the compatibility between the
GL1 and the GL2-system. At the level of the classical commutative spaces, this is given by
the map

det× sign :Sh(GL2,H
±) → Sh(GL1, {±1}), (6.10)

which corresponds in fact to passing to the setπ0 of connected components.

7. Class field theory

In our joint work with Ramachandran[5], we use the GL2-system to extend the relation
between noncommutative geometry and class field theory illustrated in the BC system for
the case ofQ to the next important case, that of imaginary quadratic fields. Thus, we assume
thatK = Q(

√−d). A point τ ∈ H is a CM (complex multiplication) point forK if we have
K = Q(τ). This is anongenericcase, in the sense of the properties of the modular field
under the evaluation map. In fact, in this case, the evaluationF → Fτ ⊂ C doesnot give
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an embedding. The image inC of the modular field can be characterized ([16]) and is the
maximal abelian extension ofK,

Fτ � Kab. (7.1)

The values{f (τ), f ∈ F } give a set ofgeneratorsof Kab and the Galois action is described
explicitly in the following way ([16])

whereAK,f = Af ⊗K. This gives a complete solution to the problem of explicit class field
theory for imaginary quadratic fields. As in the BC system one sees the explicit class field
theory ofQab appear in the symmetries ofE∞ states, the class field theory for imaginary
quadratic fields appears naturally in relation to the GL2-system. In fact, one can consider
a special class of two-dimensionalQ-lattices, given by those that also have the similarly
defined structure of a one-dimensionalK-lattice. The commensurability relation (compat-
ible with theK-structure) gives a systemAK which is closely related to both the original
BC system and the GL2-system and has properties in common with both. The arithmetic
structure of the GL2-system induces a corresponding arithmetic structureAK,Q on theAK
system, which also inherits a natural time evolution. The Galois theory of KMS∞ states of
the GL2-system has a parallel result for theAK system, which mirrors the relation between
the explicit class field theory of imaginary quadratic fields and the Galois theory of the
modular field described above (see[5] for details). The next fundamental question in the
direction of generalizations of the BC system to other number fields is how to approach the
more complicated case of real quadratic fields,Q(

√
d), for which there is not yet a complete

solution to the explicit class field theory problem. Manin’s real multiplication program[13]
suggests that the right geometric setup may still be found within the GL2-system, by looking
at the boundary strata ofSh(nc)(GL2,H

±).
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